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Abstract A coherent, intrinsic, basis-set-independent
analysis is developed for the invariants of the first-order den-
sity matrix of an accurate molecular electronic wavefunction.
From the hierarchical ordering of the natural orbitals, the
zeroth-order orbital space is deduced, which generates the
zeroth-order wavefunction, typically an MCSCF function in
the full valence space. It is shown that intrinsically embed-
ded in such wavefunctions are elements that are local in bond
regions and elements that are local in atomic regions. Basis-
set-independent methods are given that extract and exhibit the
intrinsic bond orbitals and the intrinsic minimal-basis quasi-
atomic orbitals in terms of which the wavefunction can be
exactly constructed. The quasi-atomic orbitals are further-
more oriented by a basis-set independent method (viz. max-
imization of the sum of the fourth powers of all off-diagonal
density matrix elements) so as to exhibit clearly the chem-
ical interactions. The unbiased nature of the method allows
for the adaptation of the localized and directed orbitals to
changing geometries.
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1 Introduction

The model of matter consisting of atoms linked by bonds
has been firmly established by two centuries of chemical
research. So solid is this basis for the understanding of all
known experimental evidence that it seems reasonable to
expect a rigorous quantification by ab-initio quantum chem-
istry to be possible. The theoretical identification of atoms in
molecules and a corresponding analysis of their interactions
have however proved to be challenging. This is because the
resolution of molecules in terms of atoms is not fundamen-
tal to rigorous physical theory. Rather, the latter is built on
the many-electron-many-nuclei model and the complexities
of reliable electronic wavefunctions, mainly due to electron
correlations, pose nontrivial challenges for the extraction of
atomic substructures.

Theoretical computations have in fact lead to the recogni-
tion and quantification of theoretical entities that characterize
atoms. These are the minimal basis sets (MBS), i.e. the 1s, 2s,
2p, 3s, 3p, 3d, etc. type atomic orbitals that are determined
by the optimization of closed- or open-shell Hartree-Fock-
type self-consistent-field (SCF) or multi-configuration-self-
consistent-field (MCSCF) wavefunctions in atoms. The MBS
concept is in fact the basis for all-qualitative as well as quan-
titative understanding of the electronic structures of atoms.
It is this zeroth-order model that essentially accounts for the
periodic table, which is the fundament of all chemistry. Not-
withstanding the quantitative need for complementing it by
terms that account for electron correlation and relativistic
effects, the MBS description of atoms is the bedrock zeroth
approximation on which all refinements are built.

The dominance of the atomic minimal basis sets also
extends to molecules. This can be seen by taking the expan-
sion of any reasonable molecular electronic wavefunction
in terms of a high-quality atomic orbital (AO) basis and
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re-expressing it in terms of a new AO basis that is derived
from the original one by a transformation that generates the
(MC)SCF MBS orbitals of the free-atoms (determined in the
original AO basis) as part of the new basis. Typically, the first
order density matrix in terms of the new basis is then domi-
nated by the optimized free-atom minimal-basis orbitals.

These observations suggest that (a) chemical bonds estab-
lish themselves at internuclear distances where atomic build-
ing blocks, though deformed, remain still identifiable, (b)
molecular wavefunctions can be analyzed in terms of orbitals,
and (c) there exist zeroth-order approximations to the wave-
functions that are generated from MBS-type orbitals. One
would also expect, however, that the free-atom MBS orbitals
are deformed by adaptations to the molecular environment
via the energy minimization. We shall call such deformed
MBS orbitals quasi-atomic.

It is indeed found that accurate electronic wavefunctions
in molecules always consist of a qualitatively indispensable
(single- or multi-configurational) zeroth-order component,
which contains the essential chemical, i.e. bonding infor-
mation but not the higher order refinements that provide the
dynamic correlations needed to achieve accuracy to the milli-
hartree level. From the preceding considerations, one would
then expect that the former, “non-dynamic” component is
expressible in terms of quasi-atomic MBS orbitals.

The present investigation will exhibit that this is indeed
the case. Building on previous work of this group [1–10], we
develop an intrinsic, i.e. basis-set-independent analysis of the
first-order density matrix that will lead to quasi-atomic MBS
orbitals capable of exactly expressing the zeroth-order wave-
function of a given molecule. We moreover provide a general
unbiased method for the intrinsic determination of oriented
quasi-atomic hybrid orbitals that reflect the directionality
of the chemical interactions of the atoms in a molecule.
These quasi-atomic orbitals furthermore generate local bond-
ing and antibonding orbitals. When applied to computation-
ally determined electronic wavefunctions, the conjunction
of these analyses contribute to a conceptual understanding
of the embedded bonding structures, as will be illustrated in
the subsequent paper. We shall refer to the resulting inter-
pretative picture as the Intrinsic Localized Density Analysis
(ILDA).

We emphasize that our aim is not to generate an atomic
partitioning of calculated molecular quantities by forcing
onto an electronic wavefunction a clever apportionment
based on preconceived intuitive notions. Rather, we search
for the existence of internal transformations among the orbi-
tals from which a specific wavefunction is constructed such
that the wavefunction, when expressed in terms of the trans-
formed orbitals, will naturally appear as built from atomic-
like elements that exhibit bonding. Moreover, the procedure
for finding such transformations should be free of any input
bias and unrelated to the numerical basis sets in terms of

which specific calculations are executed (be they STO-3G
or cc-double-zeta or plane-waves or others). These are the
characteristics of our approach that we subsume under the
attribute “intrinsic”. It is conceivable that, for certain sys-
tems, an intrinsic atomic resolution does not exist and this in
itself would then be of interest.

Historically, the idea that atomic building blocks are to
some degree preserved in molecular wavefunctions is of
course already embodied in the approach that Heitler and
London [11] chose in dealing with the H2 molecule as well
as in the LCAO expansions of the subsequently developed
molecular orbital method. In the fifties, Moffitt [12] for-
mulated the first general approach for expressing molecu-
lar wavefunctions in terms of antisymmetrized products of
atomic state wavefunctions (“composite atomic functions”)
and he explicitly created the concept and the term of “Atoms-
in-Molecules”. Subsequently, Hurley [13] modified and suc-
cessfully quantified Moffitt’s approach for the calculation
of numerous molecular energies and this approach was fur-
ther developed by Lam, Schmidt and Ruedenberg [14,15].
Two decades later, at about the same time as the analysis to
be discussed in the present paper was initiated [1–5], inter-
esting interpretative analyses of electronic wavefunctions in
molecules were also developed by Weinhold [16,17]1 as well
as by Bader [21–24].2 Bader’s Atoms-in-Molecules analysis
[21–24] is unique in that it is not based on orbitals but on an
imaginative cellular partitioning of the total density in real
three-dimensional space that is deduced from a topological
analysis of its differential geometry.

1 Further references can be found in [18]. This Natural Bond Orbital
analysis differs from the present approach in the following respects:

(a) It generates a set of minimal-basis-type atom-localized orbitals
that do however not span the space of all occupied molecular orbi-
tals. The actual wavefunction and energy can therefore not be
recovered from this minimal basis set.

(b) Its definitions depend essentially on the atomic orbital basis sets
used. Hence, it cannot extract, e.g., quasi-atomic orbitals from
plane-wave-based Bloch orbitals in crystals, whereas this has in
fact been accomplished by the method described in the present
paper (see Ref. [10]).

(c) It depends on the human user to input the location of two-center
bonds, three-center-bonds, etc. and certain weight factors on the
basis of his/her intuition, whereas in the method described in the
present paper this quantitative information is automatically gen-
erated from the density by an unbiased intrinsic formalism.

The approach is thus not intrinsic in the sense specified in the introduc-
tion. Bachler [19,20] has skillfully used the Weinhold approach to gen-
erate a localized bonding scheme for full-valence-space wavefunctions.
2 Further references can be found in [25].
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2 Zeroth-order wavefunction and the molecular valence
space

2.1 Hierarchy of natural orbitals

The first order density matrix of an electronic wavefunction
is properly to be understood as the kernel of a corresponding
integral operator. As such, it is completely and most suc-
cinctly characterized by its mathematical invariants. These
invariants are its natural orbitals (NOs) and their occupation
numbers [26–28].

Due to the physical nature of the molecular hamiltonian
operator, the NOs of an accurate wavefunction typically fall
into three categories: Strongly occupied NOs (SONOs), mod-
erately to weakly occupied NOs (MONOs) and very weakly
occupied NOs (VONOs).

The SONOs are small in number, typically only a few
more than half the number of electrons at most, and they have
occupations between 0.5 and 2. In many cases, the single
(Hartree–Fock-like) determinant formed from the SONOs
provides a serviceable zeroth-order model of the electronic
structure.

At the other extreme, the VONOs are very large in number
and have occupations of less than 0.1. They are needed when
the dynamical inter-electronic correlations are represented
by a configuration interaction expansion. While their aggre-
gate effect is required for the quantitative recovery of chem-
ical accuracy in the energy (1 mh), little chemical insight is
usually associated with individual VONOs beyond the fact
that they provide certain correlation contributions. They are
not needed when the dynamic correlations are recovered by
different means.

The MONOs, finally, are a small group of orbitals, typi-
cally at most half the number of electrons, with occupations
between 0.1 and 0.5. Together with the SONOs, they gen-
erate the limited multi-configurational wavefunctions that
are necessary to furnish quantitatively adequate zeroth-order
approximations whenever the single determinant of the
SONOs is even qualitatively incapable of doing so.

The reason for this NO hierarchy is that the nature and
occupation of orbitals in molecules are influenced by two
independent factors. On the one hand, there is the tendency to
lower the energy by forming bonds, i.e. by sharing occupied
orbitals between different atoms. On the other hand, there
is the tendency to lower the energy by occupying orbitals
that will generate favorable correlation interactions. While
the SONOs are essentially determined by bond formation,
the VONOs are essentially determined by correlation recov-
ery. The MONOs however can serve both purposes. Some-
times they are needed during bond formation, sometimes
bond formation and certain correlation interactions enhance
each other, sometimes they are simple correlating orbitals.

The correlations they contribute are frequently called near-
degenerate or non-dynamical.

The primary objective of the present study is to identify
those features of molecular electronic wavefunctions that are
essential for and hence elucidate the bonding interactions.
Since practically all understanding and conceptual interpreta-
tions of interatomic valence activities derive from the SONOs
and MONOs, the present analysis is not concerned with the
VONOs.

Since the MONOs do play a role in rearrangements of
bonding structures, the multi-configurational wavefunctions
they generate are indispensable as zeroth-order approxima-
tions in many instances, such as calculations along reaction
paths, and they provide a basis for elucidating energy changes
such as, e.g., reaction energies, transition state barriers and
energy spacings between states in transition metals. They
are especially important when, along a reaction path, certain
reactant SONOs gradually turn into product MONOs while
certain reactant MONOs turn into product SONOs. Notewor-
thy instances are those reactions that form the objects of the
frontier orbital approach of Fukui [29–32], Woodward and
Hoffman [33–35], where the LUMOs represent models of
certain MONOs that are deemed pertinent for the reaction at
hand.

In regions on a reaction path where MONOs and SONOs
switch occupation magnitudes, the distinction between these
two orbital types becomes obviously fuzzy. It is also pos-
sible that, in some regions on a reaction path, the MONO
occupations become so weak that they could be considered
as VONOs. Moreover, there usually exist some configura-
tions generated by the SONOs and MONOs that have very
small weights in the actual wavefunction. Such inclusions of
configurations providing some dynamic correlations in some
regions of the potential energy surface are often unavoidable
if, in order to treat chemical reactions, larger areas of that
surface are to be covered consistently.

2.2 The molecular valence space

Calculations in the full configuration space generated by the
SONOs and MONOs are size-consistent and rarely yield
unreasonable energies. We therefore consider the orbital
space spanned by these two orbital groups together as the
zeroth-order orbital space for a given reaction, and the full
configuration space generated by these orbitals as its zeroth-
order configuration space. Wavefunctions in it are prototype
zeroth-order approximations of the type referred to in the
Introduction.

While, in principle, the zeroth-order orbital space of a
molecule is identified from the natural orbital expansion of
the exact wavefunction, a close approximation to it can fre-
quently be determined from the NOs of a wavefunction
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obtained from a Hartree–Fock + singles + doubles CI calcula-
tion. From these occupation numbers, SONOs and MONOs
can be identified and they can then be further refined by
an MCSCF optimization. Alternative determinations will be
discussed below.

An important finding is that, for a particular reaction, the
zeroth-order space forms a subspace of the full optimized
reaction space (FORS) of the system [2–6]. The latter is
obtained by the MCSCF calculation in the full configura-
tion space of all possible determinants generated by all N
valence electrons in M orbitals, where M is the total number
of minimal basis valence orbitals in the system, i.e. the sum
of the numbers of MBS valence orbitals of all atoms in it (e.g.
M = 1+1+4+4 = 10 in H2CO). The cores are inactive, but
optimized. This definition of the full valence orbital space as
well as the full valence configuration space avoids any bias
in the absence of prior information on the importance of var-
ious orbitals and configurations. It should also be noted that
the orbital space as well as the configuration space defined
in this manner are basis-set independent entities in the same
way that the exact SCF MOs are. In zeroth-order, all possi-
ble valence activities of a molecule are thus described in the
MCSCF optimized function space of M orbitals, where M
is the total number of minimal basis set orbitals.

Sometimes, it is expedient to enlarge this orbital space
slightly by choosing the number of orbitals, M , equal to the
number of electrons. Such a space typically differs from the
ones considered in the preceding paragraph by including also
a correlation orbital for each lone pair.

For the sake of clarity, we shall formulate the following
general analysis within the framework of this full valence
space. A practical problem is, of course, that the dimensions
of full configurational valence spaces increase rapidly with
the size of the molecule. However, up to 90% of the determi-
nants are configurational deadwood, when appropriate orbi-
tals are chosen [36,37] and methods to identify and eliminate
this deadwood exist [38,39].

The application of the present analysis to wavefunctions
containing dynamic correlations in terms of configurations
outside the full valence space manifestly proceeds by first
identifying those natural orbitals that lie in the full valence
space and the zeroth-order part of the density matrix deter-
mined by these orbitals. The latter can then be analyzed by
the present method.

In Sect. 5, we shall furthermore show how the general
analysis is readily adapted for use with wavefunctions that
are expressed in terms of configurations that do not span the
full valence space.

2.3 Local bases of molecular valence spaces

To understand a molecule in terms of atoms and bonds means
to construct it conceptually from local components. The

object of the present analysis is therefore to examine whether
there exist local MBS-type orbitals that are capable of exactly
spanning the molecular valence orbital space and of exactly
generating the molecular valence configuration space.

An essential tool for such analyses is the invariance of full
valence spaces under non-singular orbital transformations.
This fundamental property is invoked, for instance, when the
orbitals that are the immediate results of an MCSCF energy
minimization are transformed into the natural orbitals of a
given wavefunction, because the NOs represent a standard
reference basis and typically yield a stronger MC conver-
gence. It is because of the latter attribute that the occupa-
tion numbers of the NOs in an optimized full valence space
furnish the basis for separating the SONO space from the
MONO space discussed above.

Atoms and bonds manifestly represent two different,
though related kinds of local concepts. Correspondingly,
there exist two different kinds of localization analyses for
density matrices of full valence spaces:

(a) A localization that accomplishes the identification of
bond and lone pair orbitals, which we call split locali-
zation procedure;

(b) A localization that accomplishes the identification of
quasi-atomic orbitals, which we call full localization
procedure.

3 Intrinsic bonds and lone pairs as bases of full valence
spaces

3.1 Split-localized valence orbitals

The split-localized orbitals, formulated by Bytautas et al. [7],
are obtained by separate localizations of the NOs within the
SONO space and of the NOs within the MONO space, while
maintaining orbital orthonormalities.

In the SONO space, one obtains the strongly occupied
localized molecular orbitals (SOLMOs). Since the SONO
space is nearly always extremely close to the standard SCF
space, the SOLMOs are extremely similar to the traditional
localized MOs in the occupied Hartree–Fock space. They
typically have bond or lone-pair character.

In the MONO space, one obtains the moderately occu-
pied localized MOs (MOLMOs). Each of the MOLMOs is
typically localized in the same 3D space as one of the SOL-
MOs. It is apparent that the MCSCF energy minimization
determines the shape and location of each MOLMO so as
to provide the dominant electronic correlation for the cor-
responding SOLMO. As an example [7], Fig. 1 exhibits the
SOLMOs and MOLMOs that span the full valence space of
NCCN. calculated with Dunning’s cc-pVTZ basis.
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Fig. 1 Split-localized orbitals of the full valence space MCSCF wave-
function of NCCN. Only the orbitals in the center and on the left side
of the molecule are displayed. The orbitals on the right side are mir-
ror images of those on the left. CC and NC indicate bond regions, LP
indicates lone pairs. For each orbital, the occupation number is listed

It is of some interest that, as shown in Ref. [7] and contrary
to widely entrenched notions, determinantal expansions of
full MCSCF functions in terms of split-localized orbitals typ-
ically converge somewhat more rapidly than the expansion
in terms of natural orbitals. The analysis of such expan-
sions moreover yields a systematic identification of configu-
rational deadwood in full-valence-space MC expansions and
an unbiased a-priori reduction of the size of these expansions
[33–35]. The conceptual anticipation of such correlations is
also the basis for the configuration choices of the valence-
bond-type.

In the subsequent paper it will be shown that it can also
be useful to form split-localized orbitals in one part of a mol-
ecule while forming atom-localized orbitals (see Sect. 4) in
other parts.

3.2 Intrinsic localization

Split-localizations are accomplished using intrinsic locali-
zation procedures. “Intrinsic” means that they are based on
maximizing localization measures that are functionals of the
total electronic distribution only and contain no quantities

relating to anticipated localization results that would bias
the functional. (Non-intrinsic is, for instance, any basis-set-
dependent procedure, such as the maximization of the MO
expansion coefficients corresponding to a selected set of basis
AOs, or the a priori incorporation of presumptions regarding
the locations of two-center bonds, three-center bonds, etc.,
into the procedure.)

The two most widely used intrinsic localization methods
are based on maximizing localization measures of the form

L =
∑

υ

∫
dV1

∫
dV2[φυ(x1)]

2[φυ(x2)]
2w(r12) (3.1)

while maintaining the orthogonality of the molecular orbi-
tals φν(x1). The algorithm for maximizing such fourth-order
functionals of the orbitals with an arbitrary monotonic weight
function w(r12) was developed by Edmiston and Ruedenberg
[1]. The two localization methods differ in the weight crite-
rion w(r12), namely

w1(r12) = |x1 − x2|−1 and w2(r12) = −(x1 − x2)
2,

(3.2)

respectively. The first had been postulated by Pople and Len-
nard-Jones [40], the second was proposed by Edmiston and
Ruedenberg [1]. Subsequently, the algorithm for w1 was
made considerably more efficient by Raffenetti [41],3 and
that for w2 was significantly simplified by Boys [42].4,5 For
reasons beyond the control of the present authors, the pro-
cedures using criterion w1 and w2 mostly go by the names
of Edmiston–Ruedenberg method and Boys method, respec-
tively. A new algorithm has recently been proposed by
Subotnik et al. [45].

4 Intrinsic quasi-atoms as bases of full valence spaces

4.1 Quasi-atomic localized molecular orbitals (QUALMOs)

Here, we apply the intrinsic localization procedure discussed
in Sect. 3.2 to all SONO’s and MONOs together. As was
first shown in Ref. [2–6], such full valence space localiza-
tions lead to molecular orbitals that have the character of
deformed MBS atomic orbitals on the atoms in the molecule.
Thus, intrinsically embedded in ab-initio wavefunctions are
basis-set-independent molecular orbitals with quasi- atomic
character. That character is exhibited by the overlap integrals
between these Quasi-Atomic Localized Molecular Orbitals
(QUALMOs) and the corresponding optimized MBS orbitals
of the free atoms: In all cases examined so far, their values

3 This method was first developed by Raffenetti in 1967.
4 A more explicit description was given by Kleier et al. [43].
5 A different criterion and algorithm, which Foster and Boys had pro-
posed earlier [44], was subsequently abandoned.
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exceed 0.95. A variety of examples will be exhibited in the
subsequent paper.

It should be noted that, by virtue of its basis-set-inde-
pendence, this approach as well as those to be discussed in
Sects. 4.2 and 5 are also applicable when the molecular orbi-
tals are originally not obtained in LCAO form. The method
has in fact been used to extract good quasi-atomic orbitals in
crystals from DFT orbital sets that were calculated in plane-
wave bases [10].

Since the QUALMOs are molecular orbitals, the zeroth-
order molecular electronic wavefunction can be exactly
expressed in terms of the determinants formed from them.
The latter manifestly have the character of valence-bond type
structures, as had been illustrated, e.g., in [5].

Since the QUALMOs differ so little from the free-atom
MBS orbitals, it is remarkable that the determinants formed
from the latter are known to provide poor configurational
bases for molecular wavefunctions. The small deformations
embodied in the quasi-atomic MBS orbitals are thus essential
for obtaining reasonable energy differences. R.S. Mulliken’s
comment6 on relevant energetic effects often caused by slight
orbital changes was: “A little bit can go a long way”.

It is possible that, under certain conditions, an intrinsic
localization will not yield quasi-atomic orbitals. Such a result
brings to light that the electronic structure of the system devi-
ates significantly from the standard situation.

4.2 Localization by atomic adaptation

When the intrinsic localization yields orbitals that exhibit
quasi-atomic character, then it would appear desirable from
an interpretative point of view to have these QUALMOs
deviate as little as possible from free-atom orbitals. This
can be achieved by localization procedures that refine the
QUALMOs by making them as similar as possible to free-
atom MBS orbitals, i.e. by atomic adaptation.

Let fn be some set of orthogonal MOs, such as, e.g.,
the SONOs + MONOs, that span the full molecular valence
space, and let |Aα〉 denote the QUALMOs that are to be
found. Here, atoms are indexed by capital letters A, B, . . . and
orbitals on a given atom by lower case letters α, β, . . . The
QUALMOs are related to the original MOs fn by a square
non-singular transformation

|Aα〉 =
∑

n

fnTn,Aα (4.1)

that is to be determined by the localization procedure. Since,
at the present stage of development, we consider only wave-
functions with inactive (though optimized) closed cores, the
transformation matrix T is taken to be block-diagonal: The
inner-shell block localizes the inner-shell MOs fn into the

6 A frequent verbal remark of R.S. Mulliken.

inner-shell quasi-AOs |Aα〉, and the valence-shell block
localizes the valence fn into the valence |Aα〉. Core space
and valence space are mutually orthogonal. Here and in the
following, the labels α, β should not be confused with spin
function labels.

A method for determining the transformation T by atomic
adaptation was given in [3]. Let |Aα∗〉 denote an MBS orbi-
tal on the free atom A, obtained by an atomic SCF or MCSCF
calculation. The corresponding QUALMO |Aα〉 is then
obtained by minimizing the mean square deviation

〈Aα − Aα∗|Aα − Aα∗〉 = 2[1 − 〈Aα|Aα∗〉] (4.2)

under maintenance of normalization. This yields the QUAL-
MOs as the renormalized projections

|Aα〉 =
∑

n

fn〈 fn|Aα∗〉
/[

∑

n

〈 fn|Aα∗〉2

]1/2

. (4.3)

The overlap between the quasi-atomic and the free-atom
MBS orbitals is seen to be

〈Aα|Aα∗〉 =
[
∑

n

〈 fn|A∗
j 〉2

]1/2

. (4.4)

Since the |Aα〉 obtained in this way are not orthogonal to
each other, they can be transformed into an orthonormal set
by a symmetric orthogonalization using the transformation
[〈Aα|Bβ〉]−1/2, or possibly a population-weighted orthogo-
nalization. Thereby the quasi-atomic character is somewhat
reduced but not lost. The described procedure is applied sep-
arately in the full valence space and in the core space.

An alternative atomic adaptation would be an energetic
adaptation, which we explain using the CO molecule as an
example. The original MOs fn on the right-hand side of
Eq. (4.1) comprise two of the inner-shell type and eight of the
valence type, whereas the QUALMOs |Aα〉 on the left-hand
side of that equation are expected to comprise one inner-shell
orbital and four valence orbitals on carbon, and an equal com-
plement on oxygen. Let us denote them as |Cα〉 and |Oβ〉
respectively and take one atom at a time. From the QUAL-
MOs |Cα〉 to be found for carbon, we formally construct the
full space of all six-electron determinants (each with a dou-
bly occupied closed shell) and, from them, the matrix ele-
ments for the Hamiltonian operator of the free carbon atom.
Since, according to Eq. (4.1), the five orbitals |Cα〉 are linear
combinations of the ten known original MOs fn with as yet
to be determined coefficients Tn,Cα , an MCSCF calculation
will yield these expansion coefficients Tn,Cα of the carbon
QUALMOs as well as the MC mixing coefficients that express
the quasi-atomic states of the chemically deformed carbon
atom in terms of the determinants formed from the fn .
An analogous eight-electron MCSCF procedure is then
performed with respect to the oxygen atom and it yields the
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coefficients Tn,Oβ of the five oxygen QUALMOs |Oβ〉 in
terms of the MOs fn .

The orbitals obtained in this way are the energetically clos-
est approximations to the free-atom orbital possible within
the constraints of the molecular orbital space. They will
be similar to those of Eq. (4.3) in as much as the free-
atom orbitals |Aα∗〉, which are projected in Eq. (4.3), are
in fact obtained by energy minimization in the free atoms.
The resulting six- and eight-electron wavefunctions represent
the quasi-atoms that are embedded in the fourteen-electron
molecular wavefunction of CO.

The resulting five orthogonal carbon-type QUALMOs
|Cα〉 together with the five orthogonal oxygen-type QUAL-
MOs |Oβ〉 span the same space as the ten original MOs fn.
As was the case for the orbitals of Eq. (4.3), the |Cα〉 are
not orthogonal to the |Oβ〉 however, except that all valence
orbitals are orthogonal to all core orbitals. As before, we
can obtain an orthogonal QUALMO basis by two symmetric
orthogonalizations, one between the core orbitals and the
other between the valence orbitals of the sets |Cα〉 and |Oβ〉.

It is possible to formulate an analysis in terms of orthog-
onal as well as of non-orthogonal quasi-atomic orbitals and
arguments pro and con can be advanced regarding the desir-
ability of orthogonalizing QUALMOs associated with differ-
ent atoms. Global orthogonalization has the considerable
advantage that it yields a flawless definition and identifica-
tion of orbital occupations and simpler energy expressions.
The omission of interatomic orthogonalizations, on the other
hand exhibits more dramatically the closeness of the QUAL-
MOS to the free-atom MBS orbitals. Even in that case, the
quasi-atomic orbitals on the same atom should always be
orthogonalized.

5 Full valence space precursors from incomplete
valence spaces

Many useful zeroth-order wavefunctions are not determined
in full valence spaces. There are two possibilities. One case
is that of a wavefunction that actually uses a full MO basis
in the valence orbital space, but contains only a small sub-
set of all valence configurations. In that case, the procedures
described in the preceding sections can be applied without
change. A complication will arise only if one should proceed
to re-express the N-electron wavefunction in terms of the
determinants generated from the localized orbitals, because
one would then, in general, be forced to generate the full
space. But that is not necessary for the purpose of the present
analysis.

The second case is that of a wavefunction that does not
even contain a full complement of orbitals required to span
the full orbital valence space. Let us consider the most com-
mon example of such a zeroth-order wavefunction, namely

the SCF approximation, which essentially contains only the
SONOs but no MONOs. As is well known, localization of
the SCF MOs yields bonds and lone pairs and these turn out
to be very close to the SOLMOs of the full valence space
discussed in Sect. 3.

To make headway in such a system, we consider [8] the
problem of finding quasi-atomic orbitals with the following
attributes:

(a) Their number is equal to the total number M of min-
imal basis orbitals of the atoms in the molecule. Note
that M > Mo = the number of occupied SCF-MOs.

(b) The Mo occupied Hartree–Fock orbitals can be
expressed exactly in terms of these quasi-atomic orbi-
tals.

(c) The quasi-atomic orbitals differ from the optimal
minimal-basis orbitals of the free atoms as little as pos-
sible.

In contrast to the situation in Sect. 4, these quasi-atomic orbi-
tals are not molecular orbitals of the SCF problem. We have
therefore called them quasi-atomic minimal basis orbitals
(QUAMBOs).

According to (b), the space spanned by the M QUAMBOs
must contain the Mo occupied SCF MOs. It therefore must be
that the QUAMBO space can be spanned by the Mo occupied
SCF MOs and (M −Mo) orbitals in the virtual Hartree–Fock
space. According to (c), these (M − Mo) virtual SCF orbitals
must be those (M − Mo) linear combination of all virtual
SCF MOs that minimize the deviations of the QUAMBOs
from the free-atom MBS orbitals. We have recently given a
solution of this optimization problem by a simple, basis-set-
independent algorithm [8,9]. The details of the mathematical
formalism are elaborated in Ref. [8,9].

The QUAMBOs, that are intrinsic to the occupied
Hartree–Fock MOs can thus be determined and they turn out
to be close precursors of the QUALMOs of the corresponding
full valence space MCSCF problem. As an example, Fig. 2
displays the QUAMBOs resulting [9] from a SCF calculation
of Si4H6 using Dunning’s cc-pVTZ basis.

Since the QUAMBO space is the precursor of the corre-
sponding QUALMO space, it is furthermore apparent that
the projection of the QUAMBO space on the virtual SCF
space yields a close precursor of the (M − Mo) dimensional
MONO space of the full valence MCSCF problem. Accord-
ingly, split-localized orbitals can also be constructed in the
QUAMBO space [8,9]. Finally, one can also determine the
eigenvalue of the Fock operator in the virtual projection of the
QUAMBO space and they represent basis-set-independent
formulations of LUMOs.

The described method can be applied without any change
to wavefunctions obtained by the DFT method. In fact, it
has even been successfully applied to DFT calculations of
crystals in terms of plane-wave bases [10].
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Fig. 2 The QUAMBOs deduced from the SCF wavefunction of S4H6.
Only the eleven non-equivalent orbitals are shown. The other 11 are
given by symmetry

This method, which has been described for an SCF wave-
function, can also be applied to any mutliconfigurational
wavefunction that is generated from an orbital set that
includes some but not all MONOs in the full valence space.
No changes are required in the procedure. This capability is
useful when a reaction region is treated more accurately than
the spectator-remainder of a system. The method will then
yield precursors to the remaining MONOs in the full valence
space.

6 Populations and bond orders

Suppose that the optimized full valence space wave function
is expressed in terms of some set of molecular orbitals fn .
The electronic energy can then be expressed in terms of the
orbital integrals as follows:

E=
∑

m,n

〈 fm |h| fn〉pnm +
∑

jk

∑

mn

[ f j fk | fm fn]Pi j.nm, (6.1)

where p and P are the representations of the spin-less first
and second order density matrices in this orbital basis. The
operator h is the one-electron part of the Hamiltonian and
the [ f j fk | fm fn] are the two-electron integrals. Now, it is
well known that the energy lowering that leads to chemical
binding is typically dominated by the interatomic contribu-
tions to the one-electron energy involving the valence orbitals
in Eq. (6.1). Meaningful inferences regarding binding inter-
actions can therefore be drawn from the first-order density
matrix.

Particularly useful in this context are the representations
of this matrix in terms of the split-localized orbitals and of
the quasi-atomic orbitals. Further elucidating insights can
moreover be gained by combining these two types of density
resolutions, as will be seen in the subsequent paper. It can
also be instructive to use an orbital basis that is quasi-atomic

in some parts of the molecule and split-localized in other
parts.

Let the representation of the first order density matrix in
terms of quasi-atomic orbitals (QUALMOs or QUAMBOs)
be given by

ρ(1, 2) =
∑

Aα

∑

Bβ

|Aα〉πAα,Bβ〈Bβ|. (6.2)

Since we have assumed inactive closed cores, we have

πAα,Aα = 2, πAα,Bβ = 0 for Aα �= Bβ,

if Aα = a core orbital. (6.3)

When the quasiatomic orbitals are chosen to be orthonor-
mal, then the diagonal elements πAα,Aα represent the elec-
tron populations of these orbitals.

When the quasiatomic orbitals are chosen to be non-
orthogonal, then Mulliken’s “gross population” definition
[46]7

q(Aα) =
∑

Bβ

〈Aα|Bβ〉πAα,Bβ (6.4)

can be expected to furnish adequate information, since these
definitions tend to work rather satisfactorily in the context
of minimal basis sets. Within the framework of the present
approach, the contributions from the extended-basis AOs are
absorbed in the “deformations” of the quasi-atomic minima
basis set. Therefore, Mulliken’s population analysis [47] can
be used here without suffering from the erratic inconsisten-
cies that it typically encounters in its conventional indiscrimi-
nate applications to extended AO bases.

In view of the mentioned importance of the one-electron
energy for chemical binding, it is justified to use the tradi-
tional name bond orders (see, e.g., [48]) for the off-diagonal
elements of the first-order density matrix between quasi-
atomic orbitals. It should be noted that their quantitative val-
ues for orthogonal orbitals are distinctly different from those
for non-orthogonal orbitals.

The expansion of the split-localized orbitals |λν〉 in terms
of the quasiatomic orbitals |Aα〉, viz.

|λν〉 =
∑

Aα

|Aα〉LAα,ν (6.5)

provides immediate quantitative information on the spatial
nature of the bond and lone pair orbitals as well as their prin-
cipal correlating orbitals. If the density matrix is expressed
in terms of split-localized contributions, i.e.,

ρ(1, 2) =
∑

ν,µ

|λν〉	νµ〈λν | (6.6)

7 A review is given in Section II.E of [47].
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then the matrix 	νµ is related to the matrix πAα,Bβ of
Eq. (6.2) by

πAα,Bβ =
∑

ν,µ

LAα,ν	νµLBβ,µ· (6.7)

In Ref. [9], the application of such relations led to the iden-
tification of the quantum mechanical cause of ring strain in
Si4H6.

7 Orientation (“hybridization”) of quasi-atomic orbitals

7.1 Intra-atomic orientation of quasi-atomic MOs

There still remains a certain freedom in the quasi-atomic
valence MOs in as much as the localization onto atoms is
preserved when the orbitals associated with any one atom
are mixed among each other by arbitrary non-singular trans-
formations. Let us assume that

(i) the optimized free-atom atom orbitals |Aα∗〉 that are
used to generate the quasi-atomic orbitals by the pro-
jections in Eq.(4.3) are proportional to spherical har-
monics, i.e., of the type s,p,d . . . etc,

(ii) the deduced quasi-atomic orbitals |Aα〉 are orthogo-
nalized on each atom.

We shall call these the canonical quasi- atomic orbitals. The
mixing of the canonical quasi-atomic valence orbitals corre-
sponds then to what traditionally is referred to as “hybridiza-
tion”. We shall refer to this mixing as orienting the
quasi-atomic orbitals in certain directions. The justification
for this term will be apparent in the subsequent paper.

The method that will be derived to this end in this section
is independent upon whether or not the quasi-atomic orbitals
from different atoms are orthogonal to each other. Further-
more, the method is equally applicable to QUALMOs as well
as QUAMBOs.

Let us denote the resulting oriented quasiatomic valence
orbitals by |Aa〉. They are obtained from the canonical quasi-
atomic orbitals |Aα〉 by an orthogonal transformation D:

|Aa〉 =
∑

α

|Aα〉 DA,αa (7.1)

that is block diagonal with respect to the atoms:

D =

⎡

⎢⎢⎢⎢⎣

DA 0 0 . . .

0 DB 0 . . .

0 0 DC . . .

. . . . . .

. . . . . .

⎤

⎥⎥⎥⎥⎦
, (7.2)

where every non-zero block is an intra-atomic orthogonal
matrix.

The relation between the density matrix elements πAα,Bβ

associated with the original canonical orbitals |Aα〉 and the
corresponding elements pAa,Bb associated with the oriented
hybrid orbitals |Aa〉 is determined by the identity
∑

Aα

∑

Bβ

|Aα〉 πAα,Bβ 〈Bβ| =
∑

Aa

∑

Bb

|Aa〉 pAa,Bb 〈Bb|.

(7.3)

In the present context, it is useful to partition the two matrix
representations in terms of intra-atomic and inter-atomic
blocks, viz.

π =

⎡

⎢⎢⎢⎢⎣

πAA πAB πAC . . .

πBA πBB πBC . . .

πCA πCB πCC . . .

. . . . . .

. . . . . .

⎤

⎥⎥⎥⎥⎦
, p=

⎡

⎢⎢⎢⎢⎣

pAA pAB pAC . . .

pBA pBB pBC . . .

pCA pCB pCC . . .

. . . . . .

. . . . . .

⎤

⎥⎥⎥⎥⎦
.

(7.4)

The transformation between the two matrix representations
is then given by

pAaBb =
∑

α

∑

β

DA,αaπAα,Bβ DB,βb (7.5)

i.e., every block transforms internally according to

pAB = (DA)†πABDB (7.6)

7.2 Orientation criterion

We now wish to determine the transformation D so as to
adjust the quasi-atomic MOs in such a way that chemical
interactions between atoms are exhibited in the most lucid
manner. In view of what has been said in Sect. 6, this amounts
to simplifying the one-electron part of the energy expression
(6.1) as much as possible. We shall therefore determine the
oriented orbitals by postulating that the off-diagonal bond
order matrix blocks between oriented quasi-atomic valence
orbitals have as few quantitatively significant elements as
possible, implying that each of the oriented orbitals inter-
acts with the smallest number of analogous orbitals on other
atoms. Since these operations all take place within the valence
space, we shall make no further reference to the cores.

In many instances, nonbonding orbitals, single bonds and
multiple bonds can of course be anticipated on the basis of
chemical intuition and these qualitative expectations could be
incorporated as zeroth order approximations. The approach
to be described shuns such extrinsic initial bias in any part
of the formalism. Rather, all atoms and bonds are treated on
an equal footing at each stage so that the directional bond-
ing information that is intrinsic to the wavefunction will be
brought to light by an unbiased mathematical formalism. The
method should therefore also be applicable where intuition
is no sure guide, e.g. at transition states.
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The postulated conceptual criterion implies that the bond
orders between the oriented orbitals should, ideally, fall into
two groups: Many that are very small in absolute value and
some that are large in absolute value. It must also be kept in
mind that, for i �= j , the elements pi j can be positive or nega-
tive. For a quantitative mathematical formulation that would
implement this goal, the squares of the bond orders furnish
therefore an expedient vehicle since they apply equally to
positive and negative bond orders. Moreover, one readily
deduces from the transformation equation (7.6) that, for any
block AB, the conservation relation

Trace{(pAB)(pAB)†} = Trace{(πAB)(πAB)†} (7.7a)
∑

Aa

∑

Bb

(pAα,Bβ)2 =
∑

Aα

∑

Bβ

(πAα,Bβ)2, (7.7b)

holds so that, if a transformation D makes some bond orders
in a block large in absolute value, then the others must nec-
essarily become small in absolute value.

The object of the algorithm to be described is therefore
to determine the transformations DA, DB, DC, . . . in such a
way that the squares of as few bond orders as possible will
be as large as possible, and that the squares of as many bond
orders as possible will be as small as possible. In view of
Eq. (7.7), such a “disproportionation” within all inter-atomic
bond order blocks can be achieved by maximizing the sum of
the fourth powers of all inter-atomic density matrix elements,
i.e. by maximizing the hybridization-orientation sum

HOS =
∑

A<B

∑

a,b

(pAa,Bb)
4

=
∑

A<B

∑

a,b

⎛

⎝
∑

α,β

πAα,BβDA,αaDB,βb

⎞

⎠
4

, (7.8)

with respect to the elements of D.
In order to accomplish this maximization, we proceed in

two steps: First, we determine quasi-atomic hybrid orbitals
with optimal chemical adaptation for each atom separately.
Then, the bond orders between all atoms will be considered
collectively.

7.3 Optimal orbital orientation for individual atoms

In order to assess the interactions of a particular atom A with
the rest of the molecule, we consider the bond orders of its
orbitals with all other atoms in the initial quasi-atomic basis.
They form the rectangular matrix

πA �= = [πAB πAC · ·]. (7.9)

We now perform a singular value decomposition (SVD) of
this matrix, i.e., we find the two orthogonal square matrices

UA and VA that diagonalize πA �= as follows:

(UA)†πA �=(VA) =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

π̃1 0 0 . . 0 0 0 . . . 0
0 π̃2 0 . . 0 0 0 . . . 0
0 0 π̃3 . . 0 0 0 . . . 0
. . . . . . . . . . . .

. . . . . . . . . . . .

. . . . . . . . . . . .

0 0 0 . . 0 π̃NA 0 . . . 0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (7.10)

where NA denotes the number of quasi-atomic orbitals on
atom A. Such a decomposition is always possible and stan-
dard programs exist [49].

The transformation UA manifestly generates a new set of
NA orbitals on atom A,

|Aα̃〉 =
∑

α

|Aα〉 UA(α, α̃), α, α̃ = 1, 2, 3, . . . (NA),

(7.11)

whereas the transformation VA generates (N−NA) molec-
ular orbitals φj that are linear combinations of the orbitals
on all other atoms (N = total number of orbitals). These
orbitals are manifestly constructed in such a way that one-
electron interactions occur only between the |Aα̃〉 and the φα

for α = 1, 2, . . . NA, and that the MOs φj with j = (NA+1)

to N do not interact at all with atom A. These transforma-
tions can therefore be viewed as furnishing an optimal orbital
adaptation of atom A to its entire molecular environment and
an optimal orbital adaptation of the rest of the molecule with
respect to interactions with atom A.

Having performed the SVD separately for each atom in the
molecule, we disregard the molecular orbitals φ generated by
the V matrices and keep only the atomic orbitals generated
by the U matrices. Thus, we obtain an intermediate set of
quasi-atomic orbitals |Aα̃〉, |Bβ̃〉, . . . by applying the block
diagonal orthogonal transformation

U =

⎡

⎢⎢⎢⎢⎣

UA 0 0 . . .

0 UB 0 . . .

0 0 UC . . .

. . . . . .

. . . . . .

⎤

⎥⎥⎥⎥⎦
(7.12)

to the initial quasi-atomic orbital set |Aα〉, |Bβ〉 . . . We then
obtain the density matrix p̃ in this intermediate basis by the
transformations

p̃AB = (UA)†πABUB. (7.13)

While the matrix p̃ will not have as many zeros as the
diagonal matrices of the various singular value decomposi-
tions, it will still exhibit a pronounced “disproportionation”
of the bond orders into large and small ones. The |Aα̃〉 orbi-
tals represent therefore a reasonable starting point towards
the orbitals satisfying the postulated criterion.
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7.4 Collective orbital orientation

The preliminary orbitals |Aα̃〉 found in the preceding sec-
tion are now chosen as the initial guess for the maximization
of the hybridization-orientation sum formulated in Eq. (7.8).
The resulting oriented quasi-atomic hybrid orbitals |Aa〉 will
thus be expressed as

|Aa〉 =
∑

α̃

|Aα̃〉 RA,α̃a (7.14)

so that the transformations DA of Eqs. (7.1) and (7.6) are
obtained as the products

DA = UARA. (7.14a)

In accordance with Eq. (7.8), the matrix R is to be determined
by maximizing

HOS =
∑

A<B

∑

a,b

⎛

⎝
∑

α̃

∑

β̃

p̃Aα̃,Bβ̃ RA,α̃a RB,β̃b

⎞

⎠
4

. (7.15)

This maximization will be accomplished by building up
the orthogonal matrix R through an iterative sequence of
smaller transformations. Namely we maximize only with
respect to the orbitals of one atom at a time and repeatedly
cycle through all atoms. Furthermore, the optimization of
the orbitals on a given atom is achieved by a sequence of
2 × 2 Jacobi rotations between all orbital pairs on that atom.
Thus, the total transformation R is built up from an iterative
sequence of intra-atomic orthogonal 2 × 2 transformations.

Let us consider the maximization of HOS with respect to
one such Jacobi rotation, say on atom A. Let the initial orbi-
tals be denoted by |A j1〉, |A j2〉 and the improved orbitals by
|Av1〉, |Av2〉, where j1 < j2 and v1 < v2. Then the Jacobi
rotation is given by

|Av1〉 = |A j1〉J11 + |A j2〉J21

|Av2〉 = |A j1〉J12 + |A j2〉J22 (7.16)

where

J11 = cos γ, J12 = −sin γ,

J21 = sin γ, J22 = cos γ, (7.17)

with all other orbitals remaining the same. Furthermore, let
p′ and p′′ denote the corresponding initial and final density
matrices respectively. The inter-atomic blocks of these two
matrices manifestly differ only if one atom is A and if, more-
over, the matrix-element orbital-index referring to A is A j1
or A j2 for p′, and Av1 or Av2 for p′′. To keep the nota-
tion simple, we shall denote these density matrix elements as
p′

A1,Bb, p′
A2,Bb and as p′′

A1,Bb, p′′
A2,Bb respectively. The part

of the hybridization–orientation sum that actually changes

due to this Jacobi rotation can then be written as

HOS∗ =
∑

v

∗∑

Bb

[p′′
Av,Bb]4

=
∑

v

∗∑

Bb

⎛

⎝
∑

j

p′
A j,Bb J jv

⎞

⎠
4

, (7.18)

where
∑

v runs over v = 1, 2 and
∑

j runs over j = 1, 2.
Furthermore,

∑
Bb

∗ excludes the terms with B=A.
Eq. (7.18) can be rewritten as

HOS∗ =
∑

i, j,k,l

Pi jkl Ji jkl (7.19)

with

Pi jkl =
∑

Bb

∗(p′
Ai,Bb p′

A j,Bb p′
Ak,Bb p′

Al,Bb) (7.20)

Ji jkl =
∑

v

Jiv J jv Jkv Jlv (7.21)

where the indices i , j , k, l and v all run over 1,2. The 16
terms on the right-hand side of Eq. (7.19) can be reduced to
essentially one term as follows.

Since the quantities Pi jkl as well as the quantities Ji jkl are
manifestly invariant under all index permutations, Eq. (7.19)
can be simplified to

HOS∗ = P1111 J1111 + P2222 J2222 + 6P1122 J1122

+ 4P1112 J1112 + 4P2221 J2221. (7.22)

According to Eq. (7.20) the Pi jkl in this equation are explic-
itly given by

P1111 =
∑

Bb

∗(p′
A1,Bb)

4 (7.23a)

P2222 =
∑

Bb

∗(p′
A2,Bb)

4 (7.23b)

P1122 =
∑

Bb

∗(p′
A1,Bb p′

A2,Bb)
2 (7.23c)

P1112 =
∑

Bb

∗(p′
A1,Bb)

3 p′
A2,Bb (7.23d)

P2221 =
∑

Bb

∗(p′
A2,Bb)

3 p′
A1,Bb. (7.23e)

For the Ji jkl on the other hand, insertion of the formu-
las of Eq. (7.17) into the definition (7.21) yields the explicit
expressions

J1111 = J2222 = 1 − 1
2 (sin 2γ )2 = 1

4 (3 + cos 4γ ), (7.24a)

J1122 = 1
2 (sin 2γ )2 = 1

4 (1 − cos 4γ ), (7.24b)

J1112 = −J2221 = 1
2 sin 2γ cos 2γ = 1

4 (sin 4γ ). (7.24c)

Insertion of these equations into the right-hand side of
Eq. (7.22) shows that the hybridization–orientation sum of
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Eq. (7.19) can be written in the form

HOS∗ = P + Pc cos 4γ + Ps sin 4γ, (7.25)

where

P = 3
4 [P1111 + P2222 + 2P1122], (7.26a)

Pc = 1
4 [P1111 + P2222 − 6P1122], (7.26b)

Ps = P1112 − P2221. (7.26c)

Eq. (7.25) can then be expressed as

HOS∗ = P + Q cos(4γ − θ), (7.27)

where

Q = +[P2
c + P2

s ] 1
2 (7.28)

and the angle θ is determined by

cos θ = Pc/Q, sin θ = Ps/Q, −π < θ ≤ π. (7.29)

It is apparent from Eq. (7.27) that the single-Jacobi-rota-
tion hybridization–orientation function HOS* assumes the
identical maximum value (P + Q) for all angles γ = θ/4 +
nπ/2, where n is any positive or negative integer. Even though
four of these angles lie in the acceptable range −π < γ ≤ π ,
one can nonetheless limit the choice of γ without loss of gen-
erality to the one value

γ0 = θ/4, with − π/4 < γ0 ≤ π/4, (7.30)

since it is readily seen that the orbitals resulting from using
the other angles differ from those obtained with γ0 only by
possible multiplications with (−1) or by a possible inter-
change of the two orbitals.

There exist several possibilities of skipping ineffectual
Jacobi rotations. First, one can predict from Eqs. (7.25) and
(7.27) that the increase of HOS through a particular Jacobi
rotation is exactly (Q − Pc). If this value is too small, then
θ does not have to be calculated and the density matrix
does not have to be transformed. Secondly, the invariance of
the sum-of-bond-order-squares for each inter-atomic block,
as expressed by Eq. (7.7), implies that the total interaction
between two atoms, as measured by this criterion, is inde-
pendent of the orbital orientations. If this sum is smaller than
a given threshold, as may be the case for atoms at sufficiently
large distances from each other, then these blocks have little
relevance for the orientation algorithm. In large systems, one
can therefore check all interatomic blocks first and include
only those for which the sum-of-bond-order-squares exceeds
a certain minimum value. An interatomic block should not
be excluded, of course, when studying a reaction path along
which noninteracting atoms become interacting.

In case that more than one non-bonding orbital is found
on an atom, one can diagonalize the density matrix block
between them to generate nonbonding orbitals with largest
and smallest occupation numbers such as lone pairs. This may

be of interest in some contexts. It may however also be useful
to allow for more flexibility in order to account for orbital
modifications along reaction paths when the orbital character
changes from nonbonding to chemically interacting.

8 Magnitudes of bond orders

8.1 Bond orders between two orthogonal orbitals

A meaningful quantitative assessment of bond order values
presupposes rigorous information regarding their possible
ranges. Consider a first-order density matrix generated from
two orthogonal quasi-atomic orbitals χ1, χ2 from different
atoms

p11χ1χ1 + p12χ1χ2 + p21χ2χ1 + p22χ2χ2. (8.1)

Its elements are related to its eigenvalues n1, n2 by

p11 + p22 = n1 + n2, (8.2)

p11 p22 − (p12)
2 = n1n2, (8.3)

whence also follows:

(2 − p11)(2 − p22) − (p12)
2 = (2 − n1)(2 − n2). (8.4)

Since the density matrix is derived from an antisymmetric
wavefunction, all eigenvalues lie between 0 and 2. In con-
junction with Eqs. (8.3), (8.4), this intrinsic range limitation
entails that, for given populations p11, p22, the bond order
p12 is constrained by the inequality

(p12)
2 ≤ (p12,max)

2

= Minimum of[p11 p22] and [(2 − p11)(2 − p22)]. (8.5)

Since moreover

0 ≤ p11 ≤ 2, 0 ≤ p22 ≤ 2, (8.6)

it follows that

(p12,max)
2 = p11 p22 = p2

ave − d2, if 0 ≤ pave ≤ 1, (8.7a)

(p12,max)
2 = (2 − p11)(2 − p22)

= (2 − pave)
2 − d2, if 1 ≤ pave ≤ 2. (8.7b)

where

pave = (p11 + p22)/2, d = (p11 − p22)/2. (8.8)

This dependence of the maximum bond order value on
the populations is illustrated in Fig. 3 by displaying con-
tours of constant |p12|max in the p11 − p22-plane. It shows
that the maximum value possible is |p12| = 1 and that it
occurs for p11 = p22 = 1. The maximum value possible is
seen to become less than 1 when the values of the two pop-
ulations become different from each other (d �= 0) and/or
when at least one of the two populations approaches 0 or
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Fig. 3 Contours of the values of |p12,max| in the p11/p22 plane. The
numbers 1/6, 2/6, . . .. 5/6, 1 denote the values of |p12,max|

2 (pave < 1). These mathematical inferences are in agree-
ment with the conventional expectation that maximal cova-
lent bonding can occur when each atomic orbital is singly
occupied and when the bond is not polarized. These two
conditions are not sufficient, of course, as is apparent, e.g.,
from the valence-bond wavefunction of two hydrogen atoms
at large distances. The ratio of the actual bond order to the
maximum value possible can be considered as the bond order
efficacy for the given population values. It is readily seen that
the maximum value of 1 is also valid for bond orders in larger
density matrices.

8.2 Covalent activity of a quasi-atomic orbital

We want to use the results of the preceding section to assess
the total covalent bonding activity associated with a specific
quasi-atomic orbital on atom A, say |Ax〉, when the density
matrix is given by

ρ =
∑

Aa

∑

Bb

|Aa〉 pAaBb 〈Bb|. (8.9)

To this end, we replace the orbitals 〈Bb|, for B �= A, by
the orthogonal multi-center MOs

〈w| =
∑

Bb

∗ 〈Bb| WBb,w, W†W = I, (8.10)

where
∑

Bb
∗ implies B �=A, and the coefficient WBb,1 is

defined as

WBb,1 = pBb,Ax/ p̄Ax with ( p̄Ax)
2 =

∗∑

Bb

(pBb,Ax)
2. (8.11)

In terms of the new orbitals, which are specific for the
examination of |Ax〉, the density matrix has the form

ρ =
∑

a

∑

a′
|Aa〉 pAa,Aa′

〈
Aa′∣∣+

∑

w

∑

w′
|w〉 p̄w,w′

〈
w′∣∣

+
∑

a

∑

w

{|Aa〉 p̄Aa,w 〈w| + |w〉 p̄w,Aa 〈Aa|}. (8.12)

and it is readily seen that, the interatomic bond orders involv-
ing the orbital |Ax〉 are given by

p̄Ax,w = p̄w,Ax = p̄Ax for w = 1, (8.13a)

p̄Ax,w = p̄w,Ax = 0 for w > 1. (8.13b)

where p̄Ax is defined in Eq. (8.11).
All interatomic interactions involving |Ax〉 are thus col-

lected in the orbital |w = 1〉 and the bond order p̄Ax,1. Hence,
we apply the results of the preceding section to the 2 × 2
submatrix
[

pAx,Ax p̄Ax,w=1

p̄w=1,Ax p̄w=1,w=1

]
(8.14)

where it is readily shown that

p̄w=1,w=1

=
∗∑

Bb

∗∑

Cc

pAx,Bb pBb,Cc pCc,Ax

/∑

Bb

∗
(pBb,Ax)

2. (8.15)

The total covalent activity of the quasi-atomic orbital |Ax〉
is then given by the bond order p̄Ax and its covalent effi-
cacy is given by ( p̄Ax/ p̄Ax,max), where p̄Ax,max is defined by
Eq. (8.7) with the elements p11, p22, p12 being replaced by
the corresponding elements of the matrix (8.14).

9 Summary

An examination of the invariants of the first-order density
matrix of accurate molecular electronic wavefunctions
reveals a hierarchy of three types of natural orbitals. The
two most important groups provide the orbitals that gener-
ate the chemically essential zeroth-order configuration space
for the wavefunction, which is contained in the full valence
space and reflects the bonding structures in molecules.

It is shown that embedded in full-valence-space MCSCF
wavefunctions are intrinsic building elements that are local-
ized in the bond regions (called split-localized MOs) and
building elements that are localized in the atomic regions
(called quasi-atomic MOs).

Methods are developed to extract and exhibit these fea-
tures without using preconceived notions regarding what they
should be. The resulting local orbitals satisfy the following
desiderata:
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– They are determined by intrinsic, basis-set-independent
criteria and algorithms.

– They can therefore change their shapes and directions
along reaction paths.

– In the case of the quasi-atomic orbitals, they are of the
minimal basis set type.

– They nonetheless generate determinants in terms of which
the wavefunction can be exactly expanded. They are thus
intrinsically embedded in ab-initio wavefunctions.

– Notably, a basis-set independent method has been devel-
oped for extracting oriented (“hybridized”) intrinsic
quasi-atomic hybrid orbitals from the density matrix.

The subsequent paper will illustrate how this collection of
various localized orbitals provides a tool kit for generating
interpretations of electronic structures that are compatible
with chemical thinking. As mentioned in the introduction, we
shall call this method the Intrinsic Localized Density Analy-
sis (ILDA).

While the analysis has been formulated in terms of full
valence spaces, it has also been shown to apply to wavefunc-
tions that do not use the full valence space basis, including
the SCF approximation. There are also reasons to believe that
complementary analyses for the dynamic correlations can be
developed as well.
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